Skip to main content

uperposition theory in Young double slit experiment, Condition of Maxima and Minima and calculation of Fringe width.

In 1801 Thomas Young provided the first experimental evidence for the wave theory of light from double slit interference experiment. Young allowed the sunlight to pass a through a pin hole So on first screen followed by S1 and S2 at some distance on second screen as shown in figure. On the screen he observed few coloured bright and dark bands. To increase the brightness of bands the pin holes S1 and S2 are replaced by narrow slits and to increase the number of fringes sunlight is replaced by monochromatic source. Finally the interference pattern consists of equally spaced bright and dark fringes are obtained.

Explanation of Experiment
Spherical wave came out as the sunlight passes through the pin hole So, (as per Huygen’s wave theory), the radii of these waves increases as they move away from So, when these spherical waves reaches the second screen again spherical waves came out from S1 and S2, these waves move away from S1 and S2 and hence they superimpose on each other. At the point where wave crest (or trough) of one wave fall on the wave crest (trough) of other, the resultant amplitude is maximum (maximum intensity, as I = A2) and where the wave crest of one fall on the wave trough of other, the resultant intensity is minimum. In this way large number of dark and bright bands are formed on screen.



Popular posts from this blog

Lloyd's’ mirror experiment

Lloyd's mirror This is another method for finding the wavelength of light by the division of wavefront. Light from a slit So falls on a silvered surface at a very small grazing angle of incidence as shown in the diagram (Figure 1). A virtual image of So is formed at S1. Interference occurs between the direct beam from So to the observer (0) and the reflected beam The zeroth fringe will be black because of the phase change due to reflection at the surface.  Application An interesting application of this effect may be observed when a helicopter flies above the sea near a radio transmitter. The helicopter will receive two signals: (a) one signal directly from the transmitter and (b) a second signal after reflection from the sea As the helicopter rises the phase difference between the two signals will alter and the helicopter will pass through regions of maxima and minima. Lloyd's mirror Experiment Lloyd’s Mirror is used to produce two-source interference...

Path difference and Phase difference

Path difference is the difference in path traversed by the two waves , measured in terms of wavelength of the associated wave. It has a direct relation with phase difference. Phase difference decides the nature of interference pattern but phase difference is found out by path difference. Let's assume that, two stones are thrown at two points which are very near, then you will see the following pattern as shown in the figure below: Eg: let's mark the first point of disturbance as S1S1 and the other as S2S2, then waves will be emanated as shown above. By having a cross-sectional view, you will see the same waves as shown in the figure below (in the below explanation wavelengths of waves emanated from two different disturbances is assumed to be the same). The waves emanating from S1S1 has arrived exactly one cycle earlier than the waves from S2S2. Thus, we say that, there is a path difference between the two waves of about λλ (wavelength). If the di...

Fresnel's Biprism

A Fresnel Biprism is a thin double prism placed base to base and have very small refracting angle ( 0.5o). This is equivalent to a single prism with one of its angle nearly 179° and other two of 0.5o  each. The interference is observed by the division of wave front. Monochromatic light through a narrow slit S  falls on biprism , which divides it into two components. One of these component is refracted from upper portion of biprism and appears to come from S1 where the other one refracted through lower portion and appears to come from S2. Thus S1 and S2 act as two virtual coherent sources formed from the original source. Light waves arising from S1and S2 interfere in the shaded region and interference fringes are formed which can be observed on the screen . Applications of Fresnel's Biprism Fesnel biprism can be used to determine the wavelength of a light source (monochromatic), thickness of a thin transparent sheet/ thin film, refractive index of medium etc. A. ...