Skip to main content

Common Vision Defects



This depicts the effects of rather extreme cases of nearsightedness, farsightedness and astigmatism on the paths of parallel input rays, which would be characteristic of objects at effectively infinite distance, like looking at the moon. In these extreme cases, neither the farsighted eye nor the nearsighted eye would see the moon clearly. The nearsighted eye refracts the light too much, focusing at a position before it reaches the image-detecting retina. The farsighted eye does not refract the light enough, and cannot bring the rays to a focus by the time they reach the retina.

The diagrams also assume a relaxed eye, in which case the focal length of the eye's interior lens is at a maximum. The eye's effort in accommodating to view closer objects involves muscle tension that results in the interior lens being more rounded and therefore of shorter focal length (greater refracting power). In the cases depicted here, accommodation might be sufficient to bring the moon into focus for the farsighted eye, but would work against the nearsignted eye.

If the object to be viewed is brought closer to the eye, then you would expect that the image would be worse for the farsignted eye and better for the nearsighted eye. An example for an intermediate distance might be instructive.

Popular posts from this blog

Lloyd's’ mirror experiment

Lloyd's mirror This is another method for finding the wavelength of light by the division of wavefront. Light from a slit So falls on a silvered surface at a very small grazing angle of incidence as shown in the diagram (Figure 1). A virtual image of So is formed at S1. Interference occurs between the direct beam from So to the observer (0) and the reflected beam The zeroth fringe will be black because of the phase change due to reflection at the surface.  Application An interesting application of this effect may be observed when a helicopter flies above the sea near a radio transmitter. The helicopter will receive two signals: (a) one signal directly from the transmitter and (b) a second signal after reflection from the sea As the helicopter rises the phase difference between the two signals will alter and the helicopter will pass through regions of maxima and minima. Lloyd's mirror Experiment Lloyd’s Mirror is used to produce two-source interference...

Thin-Lens Equation:Newtonian Form

In the Newtonian form of the lens equation, the distances from the focal length points to the object and image are used rather than the distances from the lens. Newton used the "extrafocal distances" xo and xi in his formulation of the thin lens equation. It is an equivalent treatment, but the Gaussian form will be used in this resource.

Path difference and Phase difference

Path difference is the difference in path traversed by the two waves , measured in terms of wavelength of the associated wave. It has a direct relation with phase difference. Phase difference decides the nature of interference pattern but phase difference is found out by path difference. Let's assume that, two stones are thrown at two points which are very near, then you will see the following pattern as shown in the figure below: Eg: let's mark the first point of disturbance as S1S1 and the other as S2S2, then waves will be emanated as shown above. By having a cross-sectional view, you will see the same waves as shown in the figure below (in the below explanation wavelengths of waves emanated from two different disturbances is assumed to be the same). The waves emanating from S1S1 has arrived exactly one cycle earlier than the waves from S2S2. Thus, we say that, there is a path difference between the two waves of about λλ (wavelength). If the di...