Skip to main content

Principal Focal Length

For a thin double convex lens, refraction acts to focus all parallel rays to a point referred to as the principal focal point. The distance from the lens to that point is the principal focal length f of the lens. For a double concave lens where the rays are diverged, the principal focal length is the distance at which the back-projected rays would come together and it is given a negative sign. The lens strength in diopters is defined as the inverse of the focal length in meters. For a thick lens made from spherical surfaces, the focal distance will differ for different rays, and this change is called spherical aberration. The focal length for different wavelengths will also differ slightly, and this is called chromatic aberration.

The principal focal length of a lens is determined by the index of refraction of the glass, the radii of curvature of the surfaces, and the medium in which the lens resides. It can be calculated from the lens-maker's formula for thin lenses.


This shows parallel beams from two helium-neon lasers converging to the principal focal point of a 30 cm double convex lens. The rays then enter a diverging lens of focal length -10cm on the right. The laser beams were made visible with a spray can of artificial smoke.

Popular posts from this blog

Interference in Wedge Shaped Film (Reflected Rays)

Thin Film Interference A film of thickness from 0.5 to 10  m is a transparent medium of glass, mica, air enclosed between glass, soap film, etc. When the light is made incident on this thin film partial reflection and partial refraction occur from the top surface of the film. The refracted beam travels in the medium and again suffers partial reflection and partial refraction at the bottom surface of the film. In this way several reflected and refracted rays are produces by a single incident ray. As they moves are superimposed on each other and produces interference pattern. Interference in Parallel Film ( Reflected Rays) Consider a thin film of uniform thickness ‘t’ and refractive index   bounded between air. Let us consider monochromatic ray AB is made incident on the film, at B part of ray is reflected (R 1 ) and a part is refracted along BC.At C The beam BC again suffer partial reflection and partial refraction,  the reflected beam CD moves again suffer partial

Lloyd's’ mirror experiment

Lloyd's mirror This is another method for finding the wavelength of light by the division of wavefront. Light from a slit So falls on a silvered surface at a very small grazing angle of incidence as shown in the diagram (Figure 1). A virtual image of So is formed at S1. Interference occurs between the direct beam from So to the observer (0) and the reflected beam The zeroth fringe will be black because of the phase change due to reflection at the surface.  Application An interesting application of this effect may be observed when a helicopter flies above the sea near a radio transmitter. The helicopter will receive two signals: (a) one signal directly from the transmitter and (b) a second signal after reflection from the sea As the helicopter rises the phase difference between the two signals will alter and the helicopter will pass through regions of maxima and minima. Lloyd's mirror Experiment Lloyd’s Mirror is used to produce two-source interference

Coddington Shape Factor

Although spherical aberration cannot be eliminated for a single lens, it can be minimized by the appropriate bending of the lens into its best form. The degree of bending can be characterized by the Coddington shape factor: Coddington Shape Factor R1 and R2 are the surface radii of the spherical lens surfaces. The minimum spherical aberration also depends on the object and image distances, so another factor enters, called the Coddington position factor: Coddington Position Factor i and o are the image and object distances for the lens as in the lens equation. The minimum spherical aberration occurs when Condition for minimum spherical aberration The higher the index of refraction n, the smaller the aberration for the optimum shape.