Skip to main content

Coherence and Path Difference



Two-point source interference occurs when waves from one source meet up with waves from another source. If the source of waves produces circular waves, then the circular wavefronts will meet within the medium to produce a pattern. The pattern is characterized by a collection of nodes and antinodes that lie along nearly straight lines referred to as antinodal lines and nodal lines. If the wave sources have identical frequencies, then there will be an antinodal line in the exact center of the pattern and an alternating series of nodal and antinodal lines to the left and the right of the central antinodal line.

each line in the pattern is assigned a name (e.g., first antinodal line) and an order number (represented by the symbol m). A representative two-point source interference pattern with accompanying order numbers (m values) is shown below.



When waves are coherent and have a path difference that is a multiple of λ, then the interference is constructive.  However, if coherent waves have travelled n λ + λ/2, the interference results is 100% destructive.


To begin, consider the pattern shown in the animation below. Point A is a point located on the first antinodal line. This specific antinode is formed as the result of the interference of a crest from Source 1 (S1) meeting up with a crest from Source 2 (S2). The two wave crests are taking two different paths to the same location to constructively interfere to form the antinodal point.



The crest traveling from Source 1 (S1) travels a distance equivalent to 5 full waves; that is, point A is a distance of 5 wavelengths from Source 1 (S1). The crest traveling from Source 2 (S2) travels a distance equivalent to 6 full waves; point A is a distance of 6 wavelengths from Source 2 (S2). While the two wave crests are traveling a different distance from their sources, they meet at point A in such a way that a crest meets a crest. For this specific location on the pattern, the difference in distance traveled (known as the path difference and abbreviated as PD) is

PD = | S1A - S2A | = | 5λ - 6λ | = 1λ

(Note the path difference or PD is the difference in distance traveled by the two waves from their respective sources to a given point on the pattern.)

For point A on the first antinodal line (m =1), the path difference is equivalent to 1 wavelength. But will all points on the first antinodal line have a path difference equivalent to 1 wavelength? And if all points on the first antinodal line have a path difference of 1 wavelength, then will all points on the second antinodal line have a path difference of 2 wavelengths? And what about the third antinodal line? And what about the nodal lines? These questions are investigated in the diagrams below through the analysis of the path difference for other points located on antinodal and nodal lines.

Point B in the diagram below is also located on the first antinodal line. The point is formed as a wave crest travels a distance of 3 wavelengths from point S1 and meets with a second wave crest that travels a distance 4 wavelengths from S2. The difference in distance traveled by the two waves from their sources to point B is

PD = | S1B - S2B | = | 3λ - 4λ | = 1λ






Popular posts from this blog

Interference in Wedge Shaped Film (Reflected Rays)

Thin Film Interference A film of thickness from 0.5 to 10  m is a transparent medium of glass, mica, air enclosed between glass, soap film, etc. When the light is made incident on this thin film partial reflection and partial refraction occur from the top surface of the film. The refracted beam travels in the medium and again suffers partial reflection and partial refraction at the bottom surface of the film. In this way several reflected and refracted rays are produces by a single incident ray. As they moves are superimposed on each other and produces interference pattern. Interference in Parallel Film ( Reflected Rays) Consider a thin film of uniform thickness ‘t’ and refractive index   bounded between air. Let us consider monochromatic ray AB is made incident on the film, at B part of ray is reflected (R 1 ) and a part is refracted along BC.At C The beam BC again suffer partial reflection and partial refraction,  the reflected beam CD mov...

Lloyd's’ mirror experiment

Lloyd's mirror This is another method for finding the wavelength of light by the division of wavefront. Light from a slit So falls on a silvered surface at a very small grazing angle of incidence as shown in the diagram (Figure 1). A virtual image of So is formed at S1. Interference occurs between the direct beam from So to the observer (0) and the reflected beam The zeroth fringe will be black because of the phase change due to reflection at the surface.  Application An interesting application of this effect may be observed when a helicopter flies above the sea near a radio transmitter. The helicopter will receive two signals: (a) one signal directly from the transmitter and (b) a second signal after reflection from the sea As the helicopter rises the phase difference between the two signals will alter and the helicopter will pass through regions of maxima and minima. Lloyd's mirror Experiment Lloyd’s Mirror is used to produce two-source interference...

Thin-Lens Equation:Newtonian Form

In the Newtonian form of the lens equation, the distances from the focal length points to the object and image are used rather than the distances from the lens. Newton used the "extrafocal distances" xo and xi in his formulation of the thin lens equation. It is an equivalent treatment, but the Gaussian form will be used in this resource.