Skip to main content

Coherence





In physics, two wave sources are perfectly coherent if they have a constant phase difference and the same frequency, and the same waveform. Coherence is an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference. It contains several distinct concepts, which are limiting cases that never quite occur in reality but allow an understanding of the physics of waves, and has become a very important concept in quantum physics. More generally, coherence describes all properties of the correlation between physical quantities of a single wave, or between several waves or wave packets.

Consider a wave propagating through space.  Coherence is a measure of the correlation that exists between the phases of the wave measured at different points.  The coherence of a wave depends on the characteristics of its source.

Let us look at a simple example.  Imagine two corks bobbing up and down on a wavy water surface. Suppose the source of the water waves is a single stick moved harmonically in and out of the water, breaking the otherwise smooth water surface.  There exists a perfect correlation between the motions of the two corks.  They may not bop up and down exactly in phase, one may go up while the other one goes down, but the phase difference between the positions of the two corks is constant in time.  We say that the source is perfectly coherent.  A harmonically oscillating point source produces a perfectly coherent wave.

When we describe the coherence of light waves, we distinguish two types of coherence.

Temporal coherence is a measure of the correlation between the phases of a light wave at different points along the direction of propagation.  Temporal coherence tells us how monochromatic a source is.
Spatial coherence is a measure of the correlation between the phases of a light wave at different points transverse to the direction of propagation.  Spatial coherence tells us how uniform the phase of the wave front is.




Popular posts from this blog

Interference in Wedge Shaped Film (Reflected Rays)

Thin Film Interference A film of thickness from 0.5 to 10  m is a transparent medium of glass, mica, air enclosed between glass, soap film, etc. When the light is made incident on this thin film partial reflection and partial refraction occur from the top surface of the film. The refracted beam travels in the medium and again suffers partial reflection and partial refraction at the bottom surface of the film. In this way several reflected and refracted rays are produces by a single incident ray. As they moves are superimposed on each other and produces interference pattern. Interference in Parallel Film ( Reflected Rays) Consider a thin film of uniform thickness ‘t’ and refractive index   bounded between air. Let us consider monochromatic ray AB is made incident on the film, at B part of ray is reflected (R 1 ) and a part is refracted along BC.At C The beam BC again suffer partial reflection and partial refraction,  the reflected beam CD moves again suffer partial

Lloyd's’ mirror experiment

Lloyd's mirror This is another method for finding the wavelength of light by the division of wavefront. Light from a slit So falls on a silvered surface at a very small grazing angle of incidence as shown in the diagram (Figure 1). A virtual image of So is formed at S1. Interference occurs between the direct beam from So to the observer (0) and the reflected beam The zeroth fringe will be black because of the phase change due to reflection at the surface.  Application An interesting application of this effect may be observed when a helicopter flies above the sea near a radio transmitter. The helicopter will receive two signals: (a) one signal directly from the transmitter and (b) a second signal after reflection from the sea As the helicopter rises the phase difference between the two signals will alter and the helicopter will pass through regions of maxima and minima. Lloyd's mirror Experiment Lloyd’s Mirror is used to produce two-source interference

Thin-Lens Equation:Newtonian Form

In the Newtonian form of the lens equation, the distances from the focal length points to the object and image are used rather than the distances from the lens. Newton used the "extrafocal distances" xo and xi in his formulation of the thin lens equation. It is an equivalent treatment, but the Gaussian form will be used in this resource.